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Jamming of monodisperse metal disks flowing through two-dimensional hoppers and silos is studied experi-
mentally. Repeating the flow experimentM times in a hopper or silosHSd of exit sized, we measure the
histogramshsnd of the number of disksn through the HS before jamming. By treating the states of the HS as
a Markov chain, we find that the jamming probabilityJsdd, which is defined as the probability that jamming
occurs in a HS containingm disks, is related to the distribution functionFsnd;s1/Mdos=n

s=`hssd by Jsdd=1
−Fsmd=1−e−asm−nod. The decay ratea, as a function ofd, is found to be the same for both hoppers and silos
with different widths. The average number of disksN;1/a=knl passing through the HS can be fitted toN
=AeBd2

, N=AeB/sdc−dd, or N=Asdc−dd−g. The implications of these three forms forN to the stability of dense
flow are discussed.
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Many materialsse.g., sand and coal ored exist in granular
form in which the grains can be considered as hard objects
that exert a repulsive force on each other only when they are
in contact. The handling of these granular materials is of
great importance in the chemical, agricultural, food, and
pharmaceutical industriesf1g. Although granular materials
may flow like ordinary fluids, our basic understanding of
granular flow is much poorer than that of the latterf2g. De-
spite the fact that the motion of each grain follows simple
deterministic physical laws, the spatial and temporal averag-
ing processes that lead to the hydrodynamic equations for
ordinary fluids are inapplicable to granular flow in most
cases due to the dissipative nature of the interparticle inter-
action. Without the equivalence of the Navier-Stokes equa-
tion, our understanding of granular flow is mainly phenom-
enological and relies heavily on experimental observations.
In the simple situation of gravity driven granular flow in
two-dimensional pipes and channels, it is known that the
flow may be in the dilute, dense, or jammed state. Transitions
among these flow states can be induced by changing the
physical dimensions, the geometry, or the roughness of the
confining boundariesf3–5g. However, the physical properties
of these flow states and the nature of these transitions are not
clearly known.

In our previous study, we examined the particle configu-
rations in the jammed states of a two-dimensional hopper
and established that the dense-to-jam transition was due to
the formation of a permanent arch that blocked the flow at
the hopper exit. A theoretical model based on the statistics of
the arch was proposed to calculate the jamming probability
Jsdd as a function of the hopper exit sized f6,7g. Intuitively,
as long asJsdd is finite, jamming is bound to occur if there is
an infinite supply of particles. In fact, it has been reportedf8g
that Jsdd does increase with the number of disks in the hop-
per. So it is possible that the dense flow may not be a real
steady state. In addition, while the system size does play a
role in the dilute-to-dense transition, it has been suggested
that the dense-to-jam transition depends on the particle size
only f3g.

In this paper, we report an experimental study of jamming

in two-dimensional hoppers and silos. We find thatJsdd is
related to the statistics of the number of particles passing
through the hopper before jamming. By treating the states of
the hopper and silosHSd as a Markov chain, an expression in
terms of the total number of disksm in the HS forJsdd is
derived. Surprisingly, our data show that jamming in a two-
dimensional silo is the same as that in a two-dimensional
hopper. Furthermore, the jamming statistics are independent
of the silo width, proving that jamming is indeed a local
transition process that depends only on the ratio between the
exit size and the grain size.

When studying the dilute-to-dense transition, both the di-
lute and dense states are steady states with particles moving
in and out with constant flux. Hence, statistical properties of
these two states can be obtained from temporal measure-
ments. In contrast, once the flow is jammed, the system is
locked in some particular quiescent state with no further par-
ticle motion. Hence, an ensemble of the jammed state can
only be obtained by repeated experiments under identical
conditions.

Our experiments are performed using a two-dimensional
container in which the two-dimensional hopper is con-
structed. Figure 1 is a schematic diagram of the container
and the hopper. The container is made of two transparent
acrylic boards with a 3.5 mm gap between them. One thou-
sand copper disks of 5 mm diameter and 3 mm thick are put
into the container. The disks are coated with nickel to reduce
friction and the repose angle of the disks in the two-
dimensional container is found to be 30°. Two aluminum
platessW1,W2d at the top portionsTd of the container form a
10-cm-wide channel where the disks stay before falling
down. A pair of brass platessV1,V2d, a pair of transparent
triangular acrylic platessA1,A2d, and another pair of triangu-
lar brass platessH1,H2d are placed in the central portion of
the container. The assemblyV1, A1, andH1 sV2, A2, andH2d
are glued together to form the leftsrightd wall of a two-
dimensional hopper with the incline edgeA1 sA2d, making an
anglef=52° to the horizontal. The horizontal positions of
the left and right walls of the hopper can be adjusted inde-
pendently to set the hopper exit sized. By removingA1 and
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A2, we can turn the two-dimensional hopper into a two-
dimensional silo of widthD.

The container is securely mounted on a platform that flips
the container to the “up” and “down” positions. Figure 1sad
is a schematic diagram of the container in the “up” position
when the disks fall from the top toward the hopper under
gravity. Disks can flow into the hopper and then fall to the
spacesBd between a pair of metal platessW3 andW4d at the
bottom of the container. Since the hopper has a finite capac-
ity, the hopper may overflow and some disks will fall on top
of W3 andW4 instead of falling intoB. After 10 s, the plat-
form flips the container to the “down” position as shown in
Fig. 1sbd. At this position, all the disks return toT. Then the
platform flips the container back to the “up” position and the
experiment repeats.

To capture the jamming configuration at the hopper exit
and to count the number of disks falling through, we place a
light box sLd at the back of the container and two cameras
sCCDA, CCDBd at the front for capturing images of the
hopper as well as that of the bottomfsee Fig. 2sadg. A contact
switch is installed to detect the moment when the hopper
arrives at the up position. Then the video signals from the
cameras are digitized by a frame grabbersData Translation,
model DT2851d of a computersPCd 10 s after the container
has arrived at the “up” position. Figure 2sbd shows a typical

image taken by camera CCDA when the flow is jammed in a
hopper ofD=20 andd=3.68.sD andd are given in units of
the disk diameter.d Figure 2scd is the corresponding image
captured by camera CCDB for the disks that fall through the
hopper to the bottom of the container. From these two im-
ages we can determine, in each experiment, if jamming has
occurred and the number of disks falling through the hopper.

For each hopper of exit sized, we repeat the experiment
M =400 times and calculate the jamming probabilityJsdd as
the fraction of jamming events. In addition we construct a
histogramhsnd for the number of disksn that fall through the
hopper in each set of experiments. Fromhsnd we obtain the
distribution functionFsnd, which is defined as the fraction of
events such that at leastn disks have fallen through, by the
following expression:

Fsnd =
1

M
o
s=n

s=`

hssd. s1d

Figure 3sad shows the histogramhsnd for the hopper ofd
=3.68 and Fig. 3sbd is the plot of the distribution function
Fsnd calculated by Eq.s1d. One can see thatFsnd decays
exponentially withn, i.e.,

Fsnd = e−asn−nod. s2d

Fitting the data to the above equation givesno=5.03 and the
decay ratea=0.0169. We repeat the experiments ford in the
range from 1.48 to 5.92 and we find thatFsnd also decays
exponentiallyfas shown in the inset of Fig. 3sbdg with no
fluctuating between 0 and 50.

The exponential decay form forFsnd in Eq. s2d can be
understood in the following way. At the beginning of the
experiment, disks drop from the topsTd to the hopper under
gravity. Because of the acceleration the disk density de-
creases as the disks flow toward the hopper. When the first
few disks reach the hopper exit, the system is in the dilute

FIG. 1. Schematic diagram of the two-dimensional hopper in the
two-dimensional container.sad The experiment starts with the con-
tainer in the “up” position when the disks flow toward the hopper
sV1,H1,A1,V2,H2,A2d. sbd Disks flow back to the topsTd at the
“down” position. The arrows show the paths of the disks.

FIG. 2. sad Schematic diagram of the setup for capturing disk
configuration images.sbd Image of the jammed hopper.scd Image of
the fallen disks in the bottom of the container.

FIG. 3. sad Histogram hsnd of the number of disksn fallen
before jamming occurs for the hopper of exit sized=3.68.sbd The
distribution functionFsnd obtained fromhsnd at this hopper exit
size. The inset ofsbd is the semilog plots ofFsnd for sid d=1.48,sii d
3.27, siii d 3.68, sivd 3.80, svd 4.16, svid 4.24, svii d 4.63, sviii d 4.88,
sixd 5.17.
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flow regime because the density is too low to trigger the
dilute-to-dense transitionf3g. Only when enough disks have
arrived at the exit may a steady dense flow be established.
Hence, the quantityno is the number of disks that fall
through the hopper in this transient dilute flow period.

When the system is in the steady dense flow regime, we
may treat the hopper as a device that is either flowingsi.e., at
least one more disk can get throughd or jammedsi.e., no
more disks can get throughd. Assume that the outflow of
disks through the exit may be considered as a succession of
independent events. Letp be the transition probability that
the hopper changes from the flowing state to the jammed
state after the next disk has passed through. Then the transi-
tion probability that the hopper remains in the flowing state
is q=1−p. Once the hopper transits from the flowing state to
the jammed state, no more disks can get through because the
exit has been blocked. So the transition probability for the
hopper to change from the jammed state to the flowing state
is zero and that to remain in the jammed state is one. Hence
we have a Markov process with a transition probability ma-
trix given byT= s q

0
p
1

d. The probability that the hopper, which
has been flowing afterno disks, remains flowing after another
n−no disks get passed isT11

sn−nod=qn−no. This is just the dis-
tribution functionFsnd measured in our experiments. Hence,

Fsnd = qn−no = esn−nodln q. s3d

Comparing the above equation to Eq.s2d, the decay rate is
found to bea=−ln q=−lns1−pd.

To find the relation between the jamming probabilityJsdd
and the jamming transition probabilityp, we note that if
there are onlym disks in the container, only those events
with less thanm disks passing through the hoppers are con-
sidered jammed. ThereforeJsdd is just the complement of
Fsmd, i.e., Jsdd+Fsmd=1, or

Jsdd = 1 − s1 − pdm−no = 1 −e−asm−nod. s4d

To proceed further, we extracta from Fsnd. We find that the
data decreases linearly in the semilog plot ofa versusd2 as
shown in the inset of Fig. 4. Hence, we fit the data to the
empirical form

a = Ae−Bd2
s5d

with two fitting parametersA andB. sIt will be shown later
that our data can also be fitted to other functional forms with
three fitting parameters.d Setting the simple exponential-
square form ofa to Eq. s4d, we have

Jsdd = 1 −e−sm−nodAe−Bd2

. s6d

On the other hand, the jamming probabilityJsdd can be ob-
tained readily by counting the number of jamming events
using the images captured by camera CCDA. Figure 5 shows
the measuredJsdd and that calculated by expressions6d using
no=25, m=500, A=0.846, andB=0.275. The good agree-
ment shows that jamming can indeed be described by a Mar-
kovian process.

The fact that the simple exponential form ofFsnd can be
explained by a Markovian process is somewhat surprising.
While the outflow of disks through the exit may be consid-

ered as a series of independent events, the jamming process
requires disks to be in some particular configurationssarches
at the exitd to block the flow. Hence, around the jamming
transition, correlations are expected to be important. Presum-
ably, before jamming actually occurs, the length scale of
these correlations remains smaller than the exit size so that
the disks flowing through the exit can be considered as com-
posed of independent groups of disks with the correlation
length scale.

Hou et al. suggested that there was only one dominant
length scalesthe exit sizedd in the dense-to-jam transition.
To check this speculation, we investigate the jamming statis-
tics of two-dimensional silos of different widthD. This can

FIG. 4. Variation of the decay ratea with hopper or silo exitd.
The solid line is the fitted curvea=Ae−Bd2

with A=0.846 andB
=0.275. The inset shows the same data and the fitted curve withd2

plotted in thex axis.

FIG. 5. Jamming probabilityJsdd versus hopper or silo exitd.
The solid line is the fitted curve using Eq.s6d. The inset shows the
mean number of disksN through the hopper or silo before jamming.
The solid line in the inset is from the exponential-square form for
N. The dashed curve is from the power law and the exponential-
reciprocal functional forms which are indistinguishable from each
other in this range ofd.
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be achieved in our container by adjusting the positions of the
walls sV1,V2d after removing the transparent acrylic plates
sA1,A2d. The decay ratea and the jamming probabilityJsdd
measured at differentd for silos of D=20, 16, and 12 are
included in Figs. 4 and 5, respectively. One can see that both
a andJsdd are independent ofD. This provides evidence that
the jamming transition depends only on the exit sized but
not on the silo widthD. Moreover,a andJsdd of the silos are
the same as those of the hoppers with the samed within
experimental uncertainties. Since a silo can be considered as
a hopper off=0°, such observation implies that the jam-
ming transition is independent of the shape of the hopper.
This is in agreement with Ref.f6g, which reports thatJsdd is
the same for hoppers off=34° and 60°.

It should be pointed out that the decay ratea is the hopper
or silo sHSd failure rate, and its reciprocal is the mean num-
ber of disksN through the HS before jamming. The inset of
Fig. 5 shows how rapidlyN increases withd. Nevertheless,
the exponential-square form ofN=A−1eBd2

implies that N
remains finite for finited. In other words, if there is unlim-
ited supply of particles to flow, the hopper will jam eventu-
ally. For example, atd=6, a<4310−5. Hence afterm
=105 particles have passed, the probability to find the hopper
in the jammed state isJsdd=1−exps−10534310−5d=0.98
from Eq. s4d. In the experiment performed by Houet al., at
d=6, the dense flow rate was 4 g/sssee Fig. 2 in Ref.f3gd
which was equivalent to 1000 spheres flowing out of their
channel per second. Therefore, the dense flow would most
probably be jammed if they could have waited for 105/103

=100 s. This means that the dense flow cannot be a real
steady state at this exit.

The above implication is contrary to our intuition that a
hopper should not jam when its exit size is much larger than

the particle size. Indeed, recent experimental studies on jam-
ming in a three-dimensional silo by Zuriguelf9,10g did re-
veal the existence of a critical exitdc beyond which no jam-
ming should occur. Although there is no evidence that a two-
dimensional hopper or silo should behave similarly in this
aspect, our data can also be fitted equally well to a power
law: N=Asdc−dd−g with A=1010, g=11.2, anddc=9.09; or to
an exponential-reciprocal form:N=AeB/sdc−dd with A=8
310−8, B=201, anddc=13.5. However, the fitted curves of
these two forms and that for the exponential-square form are
numerically indistinguishable within our experimental range
1,d,6.5 ssee the inset of Fig. 5d. In order to tell if a
critical exit size exists for two-dimensional hoppers or silos,
more data at large exit sizes will be needed. Currently, we are
building a setup in which the particles that fall out can be
circulated back to the entrance of the hopper. Then we can
perform our experiments close to the critical exit sizedc, if it
does exist.

To summarize, we have studied experimentally the jam-
ming transition in two-dimensional hoppers and silos. We
find that the jamming probabilityJsdd is related to the distri-
bution functionFsnd for the number of particlesn through
the hopper or silo before the dense-to-jam transition occurs.
While the jamming probability depends only on the exit size
d, it is the same for hopper and silo, and regardless of width
D. We also discuss the possibility of a critical exit sizedc
beyond which the hopper or silo will never be jammed.
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